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Abstract 

A representation system developed by Smullyan is discussed briefly. Addi- 
tional notation is introduced to make it suitable for problems concerned with 
physical systems. Rules for the formation of a concatenation operation called 
the product, are introduced. 

Axiomatisation of a physical theory is difficult. To begin with the 
requirement that  every relevant semantic assumption should be 
related closely to logical formalism is likely to result, finally, in an 
extreme form of operationalism of the variety devised by Eddington 
(1940), which, though it may possess considerable beauty and mathe- 
matical rigour, involves the problem tha t  it is hard to link satis- 
factorily with well-known empirical facts in physical science. An 
opposite viewpoint, still adopted by many, is that  one need not 
bother to axiomatise rigorously at all. I t  is noteworthy, however, that  
when real difficulties arise, as in relativistic quantum field theory, 
physicists sometimes tend to return to axiomatic methods. The 
desirability of axiomatics is well emphasised elsewhere (Bunge, 1967). 

The present work steers a middle course, invoking a partly semantic 
and partly formal presentation to describe a theory (in this case 
non-relativistic quantum mechanics) and then discussing some of the 
semantics in terms of logical structures. One such structure is de- 
scribed in some detail in this paper, this structure and its modifications 
should be adaptable to various problems which involve the change of 
state of a system. The crucial point, of course, is to be sure that  one 
is specifying concepts implicit in an essential way in the part of the 
theory hitherto dealt with discursively; ultimately this would be 
proved using experimental tests. 

The second of these two papers relates a representation system to 
descriptions of real and unreal physical processes. The only processes 
which can be referred to by provable sentences in the representation 
system are the real processes, and sentences referring to unreal 
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processes are refutable. The Hilbert spaces then needed for description 
of non-relativistic quantum mechanics are superspaces of those usually 
used, and an absolute timescale is required. 

For convenience Cole's abbreviations for the terms 'axiom', 'defini- 
tion', 'remark', 'theorem', 'convention', 'proof', and 'example' are 
used (Cole, 1968). The mathematical structure used is developed from 
the representation theory of Smullyan (1961), some knowledge of 
which is desirable for an understanding of this work. The particular 
feature of the present system is the product as defined in DF(14). 

RMK/DF(1 ) :  First the contents of the representation system Z are 
given by AX(1) to AX(5), and the properties of Z are summarised in 
DF(1) to DF(l l ) .  
AX(1) :  A denumerable set of expressions E, with a one-to-one Godel 
numbering g of E onto N. N is a subset of the positive integers. 
AX(2)  : A subset of E, called S, containing sentences of Z. 
AX(3)  : Subsets T and R of S. 
RMK(2)  : T and R are subsequently regarded as the sets of the true 
and refutable sentences respectively. 
AX(4)  : A subset P of E called predicates. 
AX(5)  : A mapping M from E • N into E. M assigns to each expression 
X and positive integer n a unique expression M(X,n) ,  with the follow- 
ing property: 

X e P ,  n ~N- -~  M ( X , n )  ~ S  

DF(1): I f H  e P ,  H represents a number set A ifffor each n e N, 

n e A e--~ M(H,n )  e T  

DF(2) : For each H ~ E define g(H) = h. 
C VN(1) : Lower-case letters are the Godel numbers of the correspond- 
ing upper-ease letters if the latter are expressions in a representation 
system. 
DF(3): I f  h e N, the formation of M(H,h)  is called diagonalisation, 
M(H,  h) is called a diagonal sentence iff H e P. 
DF(4) : For a set, W, of expressions, define the set W* of numbers by 
the condition 

i e W * ~  M( I , i )  e W (I ~ E) 

CVN(2) : W'i s  then the set of Godel numbers of expressions diagonal- 
isabIe in W, and the asterisk applied to a symbol for a set has such 
a meaning throughout this work. 
DF(5): A sentence X is known as a Godel sentence for a set W of 
expressions iff 

X ~ T + - - ~ X e W  
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DF(6) : X is a Godel sentence for a set A of numbers  iff 

X eTe--~g(X) e A  

TH(1): I f  H represents  W* in Z, M(H,h) is a Godel sentence for the 
set W. 
RMK(3):  Make addit ions to  the no ta t ion  as described by  CVN(3), 
CVN(4), and  CVN(5). These do not  al ter  the propert ies  of Z. 
C VN(3) : I f f  g(Y) = y then  g-~(y) = Y each y e E 

M(H, h) = M(g-l(h), n) = G(h, n) each h, n ~ N 

CVN(4): g(G(h,n)) = g(h,n) each h, n e N. 
CVN(5): Let  r q5 be dist inct  objects not  in N U E. Then  let X _~ N 
define the funct ion P~ on N by  

Pz(y) = y 

P~(y) = r 

D.F(7): g can be ex tended  to 
E U {q)} onto N (J {r by  defining 

gl(W) = g(W) if  

g~(W) = r if  

DF(8): G(a,b) is ex tended  to Gl(a,b) by  

Gl(a, b) = G(a, b) if  a # r and 

Gl(a, b) = r if a = r or 

if y E X  

i f  y ~ X  

a one-to-one funct ion gl mapping  

W e E  
W = r  

b = r  or a = b = r  

RMK(4) : Represen ta t ion  of number  set A by  H can now be wr i t ten  
as follows 

G(h,n) ~ T +-+ Gz(h,P ~(n)) e E 

Also if Gl(h,Pw.(n)) ~ E iff G(h,n) e T then  G(h,h) is a Godel sentence 
over W. 

One now has a formalism whose decision propert ies  are ve ry  simple, 
a fact  exemplified by  Smullyan 's  version of Godel 's theorem.  
Dr(9) : Dot  mult ipl icat ion is used as follows. 

For  a n y X _ ~ N ,  Y _ _ N  

P x .  Py(a) = Px(Py(a)) 

Tha t  is, in this example  one first operates with Py, t hen  with Px. 
Dr(10): Square brackets ,  [ ], a round a pair  of numbers  define a 
funct ion on (N O (r such t ha t  if x = r or y = r or x = y = r then  
[x,y] = r  I f  x, y e N  then  [x,y] e N  aud if  g-X(x), g-l(y) e p  then  
g-l[x,y] e P. 
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DF(11): The product is now introduced. For every triple <a,b,c} of 
numbers in N and every quartuple <X, Y, Z, W} of sets of numbers 
in N 

Gl(Px(a), Pr(b)), GI(Pz(b), Pw(c)) e E -> 

Gl([Px(a),Pz(b)], [Pr(b),P~(c)]) e E 

Gl([Px(a), Pz(b)], [Pr(b), Pw(c)]) is called the product of 

Gl(Px(a),Pr(b)) and Gl(Pz(b),Pw(c)). 

RMK(5):  Consider Gl([a, Pz(b)], [Pr(b),c]). I f  

Pz.Pr(n) = r 
for each n ~ N, 

then 
Gl([a, Pz(b)], [Pr(b), c]) = q) 

On the other hand, if Y, Z are sets such that  

Pz.  Py(b) = b 
Then 

Gl([a, b], [b, el) e E 

There are several alternative definitions (U(1) to U(4)) which might 
have been used for the product instead of DF( l l ) .  In U(1) to U(4), 
a, b, c e N are numbers and X,  Y, Z, W e N are sets of numbers. The 
expression to the right of the implication sign is the one that  might 
have been used for the product. 

U(1): 
Gl(Px(a),Py(b)), Gl(Pz(c),Pw(d)) e E -+ 

Gl([Px(a),Pz(c)], [Pr(b),Pw(d)]) e E 

With c # d, U(1) leads to nothing beyond the ordinary results for 
ordered pairs. DF(11) will later be shown to have physical relevance. 

U(2): 

GI(Pz(b), Pw(C)), GI(Px(a), Py(b)) e E -> 

Gl([Pz(b), Px(a)], [Pw(c),Pr(b)]) e E 

I f  used instead of DF( l l ) ,  the results are equivalent though not 
identical to those obtained by DF(11), as is also true of U(3) and U(4). 

U(3): 

Gl(Px(a),Pr(b)), G~(Pz(b),Pw(c)) ~ E - +  

G1([Px(a),Pr(b)], [Pz(b),Pw(c)] ) e E 
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U(4): 

Gl(Px(a), Pr(b)), Gl(Pz(b),Pw(c)) e E -+ 

Gl([Px(a),Pz(b)], [Pw(c),Py(b)]) ~ E 

R M K / D E F ( 6 )  : Zs  is described by  axioms AX(!)  to AX(5) and defini- 
tions DF(1) to DF(10) together with axioms AX(6) and AX(7) and 
definitions DF(12), DF(13), DF(14), DF(15) details of which are given 
below. From now on Zs is the formal system we refer to unless contrary 
specification be given. 
A X ( 6 )  : Zs is simply consistent. 
A X ( 7 )  : Zs  is symmetric. 
R M K ( 7 )  : AX(7) implies that  for each H + P, n c N,  if G(h,n) e T then 
there exists H '  + P such that  G(h', n) + R. 

Note also that  every Tarski theory is symmetric. 
DF(12):  Now define a new function Ps on {hlg-l(h) ~ P} U {r 

Ps(h) = h', Ps(h')  = h, g-l(h), g-l(h')  E P 

The notation used is the same as is used in RMK(7). 
DF(13) : Define PA, a function on N U {r 

P.4(n) = n if  g- l (n )  e P and P a .  P~(n) = r 

Otherwise 
P+t(n) = r if g-l(n)  e P 

In this case 

P ~ .Ps(n) = Ps(n) 

P~(v) = v if for some g-l(h) e P,  G(h, v) e T,  y e n  

and 

P A(h) = h and G(m, v) ~ R, g- l (m)  �9 P; Pa(m) # r 

Otherwise 

P~(n)  = r n + N U {r 

R M K ( 8 )  : DF (13) implies that,  if the set of predicates in Zs which has 
the set of Godel numbers A c iV contains an element H where 
G(h,n) ~ T (i.e. G(h,n) is 'true') then it does not contain the element 
H',  G(h',n) ~ R. 
DF(14) : The product used in Z s is defined as follows. For every triple 
(a, b, c} of numbers in N and every quartuple (~,fl, ~,, 8} where P=, Pt~, 
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P~, P~ are functions defined by CVN(5) or DEF(12) or may be any 
dot products of both kinds of functions, 

at(P~(a),P~(b)), r c E --~ 

GI([P~(a),PA .P~(b)], [P~,(b),P A .Ps(c)]) e E U 

GI([P~(a),P~ .P~(b)], [P~(b),PA .P~(c)]) is said to be the product of 
the two expressions to the left of the implication sign. In DF(14), 
GI(P~,(b),P~(c)) is said to right-multiply GI(P~(a),P~(b)) to give the 
product. A restriction is made on the binary mapping [ ] in 
I)F(15). 
R M K ( 9 )  : Several results follow immediately in Zs. 
TH(2):  Gl([q,q],[q,q]) and GI([P,(q),P,(q)], [P,(q),P,(q)]), ( q e N )  
cannot both be contained in E. 
TH(3):  Gl([q,q], [q,q]) and Gl([P~(q),q], [P,(q),q]), (q e N) can both be 
contained in E. 
TH(4):  Gl([q,q],[q,q]) and Gl([q, Ps(q)],[q,Ps(q)]), ( q ~ N )  cannot 
both be contained in E. 
RMK(IO) :  U(2), U(3), and U(4) clearly cannot be used usefully as 
co-definitions with DF(14), even if they are restricted in some way by 
use of PA. 
R M K ( 1 1 ) :  One consequence of DF(14) is that,  if one expression can 
be right-multiplied by another, it cannot be right-multiplied by  the 
converse of the latter to give an expression in Zs. 

I f  Gl([q,q],[q,q])eE,  then any expression with g-l(ps(q)) as 
predicate, even including G I(Ps (q), Pv (q)) would not give an expression 
in Zs on right-multiplication. In part  II, we deal with systems where, 
inevitably, for some q ~ N,  GI(Pv(q),P~(q)) e T holds. I t  will be there 
seen that the calculus is usefully simplified by  the restrictions of 
DF(14) beyond those which DF(11) would produce. 
RMK(12)  : Consider 

{P~(a)lg-*(a) e P }  = To 

{P, .P  A(a)lg-l(a) e P}  = Ro 

Then for each r (1), r ('>) ~ R0, t (~), t (2) e To 

[r(1),p~(r(2))] = [t(D,P~(r(*))] = c~ 

Also, for some t (a, t (4) ~ To, r (a, r (4) e R0 

[r(U,PA(t(2))] -- t (a or [r(1),pA(t(2))] = r (a 

[t(1),P~(t(2))] = t (4) or [t(x),pA(t('2))] = r (4) 
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I f  p roduct  formation is associative, as we will require, then 

[ t(l), P , . [  r(1) , P~  (t(2))]] = [[ t(1), P.4 (r(l))], P.~ (r 

= [r = r 

[r(1), t(2)] = r(,~) 
Also 

[t(1), r = t(4) 

Complete the definition of Z s by  adding DF(15). 
DF(15) : For  each a, b e N 

P A([a, P A(b)]) ~ r ~-~ P A(a) = a, P A(b) = b 

P ~ .P,([a, P 4(b)]) ~ r ~-~ P A .P~(a) = a , P  A(b) = b 

CV~V(6): [a,P A(b)] = [a,b]' for each a, b E N.  
R M K ( 1 3 )  : Zs  is used in Pa r t  I I  to facilitate the definition of deter- 
minism of physical  processes. 
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